In this paper, a modular interleaved boost converter is first proposed by integrating a forward energy-delivering circuit with a voltage-doubler to achieve high step-up ratio and high efficiency for dc-microgrid applications. Then, steady-state analyses are made to show the merits of the proposed converter module. For closed-loop control design, the corresponding small-signal model is also derived. It is seen that, for higher power applications, more modules can be paralleled to increase the power rating and the dynamic performance. As an illustration, closed-loop control of a 450-W rating converter consisting of two paralleled modules with 24-V input and 200-V output is implemented for demonstration. Experimental results show that the modular high step-up boost converter can achieve an efficiency of 95.8% approximately.
Mechanical project in trichy, ieee 2013 power electronics projects, ieee 2013 matlab simulation project, Matlab Image processing project, ieee project for eee, Ieee project for ece, ieee 2013 embedded project, mini project for all final year engineering, diploma, b.e, m.e students in Chennai and trichy
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment